Link to PDF containing derivation for both single and multiple CVs
According to well-tempered metadynamics [1], bias potential (Vbias) deposited at any time (t) along a single collective variable (CV) with respect to CV visited at an iteration (niter),
Vbias(CV,tniter)=Vbias(CV,tniter−1)+w×exp(−2σ2(CV−CVniter)2)
- In standard metadynamics [2], w=w0
- In well-tempered metadynamics [1], w=w0×exp(−kBΔTVbias(CV, tniter ))
Force at every timestep (t) due to deposited bias potential:
Fbias(r,t)
=−(dCVdVbias(CV,tniter))×drdCV
Substituting Vbias(CV,tniter) in the first term of the RHS in the above equation results in
dCVdVbias(CV,tniter)=dCVd[Vbias(CV,tniter−1)+w×exp(−2σ2(CV−CVniter)2)]
- Helper function: Derivative of Gaussian at any iteration
dCVd[w×exp(−2σ2(CV−CVniter)2)]=
−w×σ2(CV−CVniter)
×exp(−2σ2(CV−CVniter)2)
Substituting helper function in dCVdVbias(CV,tniter),
dCVdVbias(CV,tniter)=iter≤niter−1∑[−w×σ2(CV−CVniter)
×exp(−2σ2(CV−CVniter)2)]
−w×σ2(CV−CVniter)
×exp(−2σ2(CV−CVniter)2)
[1] A. Barducci, G. Bussi, and M. Parrinello, Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method, Physical Review Letters 100, 020603 (2008).
[2] A. Laio and M. Parrinello, Escaping Free-Energy Minima, Proceedings of the National Academy of Sciences 99, 12562 (2002).